Ch. 6 Trig Functions (triangle approach)

Ch. 5 Trig Functions (unit circle approach)

- Sine
- Cosine
- Tangent
- Cosecant
- Secant
- Cotangent

We will complete ch. 6 first, followed by ch. 5

Notes: 6.1

**Standard Position: An angle that has its vertex at the origin and the initial side is along the positive x -axis.

Positive angle
Counter-clockwise rotation $\alpha=$ alpha

Negative angle Clockwise rotation $\theta=$ theta
** One full rotation $=360^{\circ}$ or 2π radians.
**Angle measurements of more than 360° or 2π represent multiple rotations.
**Coterminal Angles in standard position have the same terminal side. They can be expressed as $\theta \pm \mathbf{3 6 0}(\mathbf{n})$ or $\theta \pm \mathbf{2 \pi (n)}$ general angle \uparrow whole number

Radian: The length of the corresponding arc on a unit circle.

1 radian $=\frac{180^{\circ}}{\pi}$ degrees $\left(57.3^{\circ}\right)$
1 degree $=\frac{\pi}{180^{\circ}}$ radians (.017)
basic radian values you should know:

$$
\begin{aligned}
& \frac{\pi}{6}=30^{\circ} \\
& \frac{\pi}{4}=45^{\circ} \\
& \frac{\pi}{3}=60^{\circ}
\end{aligned}
$$

Find the length of an arc on any circle:

$\mathbf{s}=\mathrm{r} \theta$

$s=$ arc length
$r=$ radius
$\theta=$ central angle in radians
If the angle is given in degrees, then convert to radians before calculating the arc length.

Today's assiǵnment: 6.1 \#6,20,22,30,32 9-33odd, 41-53odd, 54,55
(NO calculator, no decimals except 21-23, 53-55)
6. Convert from degrees
to radians using $\frac{\pi}{180^{\circ}}$

$$
\begin{aligned}
\frac{36^{\circ}}{1}\left(\frac{\pi}{180^{\circ}}\right) & =\frac{36 \pi}{180}-9 \\
& =\frac{4 \pi}{20}=\frac{\pi}{5}
\end{aligned}
$$

20. Convert from radians
to degrees using $\frac{180^{\circ}}{\pi}$

$$
\begin{aligned}
-\frac{3 \mathscr{F}^{\prime}}{2}\left(\frac{180^{\circ}}{H}\right) & =\frac{-3(180)}{2} \\
& =-3(40) \\
& =-270
\end{aligned}
$$

Today's assignment:

22. Convert from radians
to degrees using $\frac{180^{\circ}}{\pi}$
-2 radians

$$
\begin{aligned}
\frac{-2}{1}\left(\frac{180^{\circ}}{\pi}\right) & =\frac{-360^{\circ}}{\pi} \\
& \approx-114.6^{\circ}
\end{aligned}
$$

30. Find two positive and two negative angles that are coterminal to: 135°

From your notes:

$\theta \pm 360^{\circ}(\mathbf{n})$
or
$\theta \pm 2 \pi(n)$

Today's assignment:

32. Find two positive and two negative angles that are coterminal to:

$$
\begin{aligned}
& \frac{11 \pi}{6} \pm 2 \pi(1)^{\frac{2 \pi}{6}}=\frac{11 \pi}{6} \pm \frac{12 \pi}{6}=\frac{23 \pi}{6} \text { and } \frac{-\pi}{6} \text { nole } \\
& \frac{11 \pi}{6} \pm 2 \pi(2)=\frac{11 \pi}{6} \pm \frac{24 \pi}{6}=\frac{35 \pi}{6} \text { and } \frac{-13 \pi}{6} \\
& \frac{4 \pi}{6} \cdot \frac{6}{6} \\
& \text { no calc }
\end{aligned}
$$

Today's assignnment: 6.1 \#6,20,22,30,32 9-33odd, 41-53odd, 54,55
(NO calculator, no decimals except 21-23, 53-55)

CH. 4 TEST

- Most problems = 4 points each
- \#4-7, plus continuously compounded word problem = 5 points each

