Ch.6 Trig Functions (triangle approach)

Ch.5 Trig Functions (unit circle approach)

- Sine
- Cosine
- Tangent
- Cosecant
- Secant
- Cotangent

We will complete ch.6 first, followed by ch.5

**<u>Standard Position</u>: An angle that has its vertex at the origin and the initial side is along the positive x-axis.

Positive angle Counter-clockwise rotation $\alpha = alpha$ Negative angle Clockwise rotation θ = theta **One full rotation = 360° or 2π radians.

**Angle measurements of more than 360° or 2π represent multiple rotations.

**Coterminal Angles in standard position have the same terminal side. They can be expressed as $\theta \pm 360^{\circ}(n)$ or $\theta \pm 2\pi(n)$ general angle \uparrow \uparrow whole number

Find the length of an arc on any circle:

s = rθ

s = arc length

r = radius

 θ = central angle in <u>radians</u>

If the angle is given in degrees, then convert to radians before calculating the arc length.

Today's assignment: 6.1 #6,20,22,30,32 9-33odd, 41-53odd, 54,55 (NO calculator, no decimals except 21-23, 53-55)

to radians using $\frac{\pi}{180^{\circ}}$ $\frac{36^{\circ}(\pi)}{180^{\circ}} = \frac{36\pi}{180} = 9$ $= \frac{4\pi}{20} = \frac{11}{5}$

6. Convert from degrees

20. Convert from radians to degrees using $\frac{180^{\circ}}{\pi}$ $-\frac{3\pi}{2}\left(\frac{180^{\circ}}{\pi}\right) = \frac{-3(180)}{2}$ = -3(40)= (-270)

Today's assignment:

30. Find two positive andtwo negative angles that arecoterminal to: 135°

From your notes: $\theta \pm 360^{\circ}(n)$ 0r \uparrow whole $\theta \pm 2\pi(n)$

 Today's assignment:
 6.1 #6,20,22,30,32
 9-33odd, 41-53odd, 54,55

 (NO calculator, no decimals except 21-23, 53-55)

Most problems = 4 points each

 #4-7, plus continuously compounded word problem = 5 points each